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Abstract

We analyze stationary and nonstationary equilibria in search-based models of

liquidity with indivisible assets. Two formulations are considered: the usual

one in monetary theory, based on random search and bargaining; and a more

novel one, with better microfoundations, based on directed search and price

posting. For each we generalize earlier specifications and prove new results.

These models have equilibria where endogenous variables change over time as

self-fulfilling prophecies, including sunspot equilibria, as previously shown in

special cases. As not previously shown, and as may be surprising, we prove

in general there are no equilibria where variables cycle deterministically.
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1 Introduction

We analyze dynamics in simple — i.e., indivisible-asset — search models of liquidity.

Two formulations are studied: the usual one in monetary theory, based on random

search and bargaining as in Shi (1995) or Trejos and Wright (1995); and a more

novel one, with arguably better microfoundations, based on directed search and price

posting as in Julien et al. (2008). For each we generalize assumptions in previous

analyses and prove new results. The models can have multiple steady states, plus

equilibria where endogenous variables change over time as self-fulfilling prophecies,

including stochastic (sunspot) equilibria that fluctuate randomly. This is well known

(for bargaining; not for posting). A reasonable conjecture is that the models also

have cyclic or chaotic equilibria where they fluctuate deterministically. We prove in

a fairly general specification that this conjecture is false, which may be surprising,

given what is known about monetary economics in general.1

We are interested in indivisible-asset models that restrict individual holdings

to  ∈ {0 1} because they allow one to succinctly address key issues: What fric-
tions make monetary exchange an equilibrium or an efficient arrangement? When

are assets valued for liquidity? Do liquidity considerations lead to multiplicity or

volatility? How does this impinge on allocations and welfare? While some of these

issues can be studied when  ∈ {0 1 } or  ∈ R+, that is complicated by the
endogenous distribution of  across agents, and hence requires special assumptions

or numerical methods (see Lagos et al. 2017 for survey of the literature). Hence, we

think there is still a role for indivisible-asset theory.2

1See Rocheteau and Wright (2013) for cycles in a modern monetary model, and Azariadis

(1993) for similar results in OLG (overlapping generatons) and other older models. In a setting

more similar to ours, Burdett et al. (2018) can get cycles, for reasons explained below.
2To put this in perspective, indivisible-asset models are deployed to good effect in studies of

middlemen by Rubinstein and Wolinsky (1987), banking by Cavalcanti and Wallace (1999), and

OTC financial markets by Duffie et al. (2005). Similarly, the Pissarides (2000) and Burdett and

Coles (1997) models of employment and partnership formation assume a firm can hire  workers

and an agent can have  partners, where  ∈ {0 1}, yet they still provide important insights.
Indeed, {0 1} restrictions have proved useful in search theory going back at least to Diamond
(1982). Also note that {0 1} is not a bad approximation for many assets, e.g., housing, but most
of the papers make this assumption not for realism, only to illustrate salient ideas transparently.
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Given this, we want to better understand the properties of these models. Again,

we relax several assumptions in previous analyses and provide more results. Our

characterization of existence, multiplicity vs uniqueness, and dynamics extends pre-

vious papers by using general bargaining solutions and meeting technologies, plus

we consider assets with general rates of return, not just currency. While Trejos and

Wright (2016) allow general returns, they only consider a special parametric meeting

technology, and only examine Kalai bargaining, while our specification nests Kalai,

Nash, simple strategic bargaining, Walrasian pricing, and other solution concepts.

Similarly, while Julien et al. (2008) study price posting with directed search, they

also consider a special parametric meeting technology, only allow fiat money, and

only examine steady state. So there is much here that is new.

As regards the bigger picture, one may ask, why is it interesting to know if a

given model can or cannot have cyclical monetary equilibria? Well, it is a venerable

notion that monetary economies are subject to multiplicity, instability or volatility,

in ways that nonmonetary economies are not, and economists have spent some time

investigating this (again see Lagos et al. 2017). This is parallel to the banking

literature, where it is sometimes said that economies with financial intermediation

face similar issues. In work emanating from Diamond and Dybvig (1983), first

someone finds assumptions under which bank runs occur, then someone shows with

slightly different assumptions they cannot, someone else shows with a twist on the

assumptions they can after all, etc. (Ennis and Keister 2010 nicely summarize this

evolution). Similarly, the results here refine our knowledge about when monetary

exchange is or is not susceptible to volatility: in a widely-used model, while multiple

equilibria are possible, we prove cycles are not. We also explain the differences

between this model and ones where cycles are possible.

In what follows, Section 2 describes the environment. Then Sections 3 and

4 analyze bargaining and posting. Section 5 concludes. More technical results

are in the Appendix; extensions and alternative specifications are contained in a

Supplementary Appendix posted at https://hechao.weebly.com/.
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2 Environment

A [0 1] continuum of infinitely-lived agents meet bilaterally in discrete time. There

is a set of goods G, where agents of type  consume only a subset G and produce
 ∈ G. The measure of any type is the same. From  units of  ∈ G,  gets  ()
utils while production costs  () utils, with  (0) =  (0) = 0 and  (̄) =  (̄)  0

for ̄  0. Also, 0 ()  0 ()  0, 00 ()  0, and 00 () ≥ 0 ∀  0, 0 (0) = ∞.
Also, ∗ ∈ (0 ̄) solves 0 (∗) = 0 (∗). Then specialization is generally captured

as follows: drawing at random two agents  and ,  is the probability  produces

 ∈ G and  produces  ∈ G (a double coincidence), while  is the probability
 produces  ∈ G and  produces  ∈ G (a single coincidence). For simplicity,
set  = 0 to rule out barter, and let goods in G be nonstorable so they cannot act
as commodity money. Then, to preclude credit, assume agents cannot commit and

histories are private information.

The above formulation is standard in models of asset liquidity. Here there is

one asset, with a flow return , in utils. If   0 it is a dividend, as in standard

asset-pricing theory; if   0 it is a cost of holding the asset, as in many models

of commodity money; and if  = 0 it is fiat currency according to common usage.

While much work has focused on  = 0, clearly, it is interesting to relax that in

theory and in applications. In the class of environments under consideration, an

individual’s asset position is  ∈ {0 1}. With a fixed supply  ∈ (0 1), at any
point in time measure of agents, called buyers, have = 1, while measure 1− ,
called sellers, have  = 0. After trade a buyer becomes a seller and vice versa.

For the meeting process, as in Pissarides (2000), consider any market with a

measure 1 of buyers and a measure 0 of sellers, where  = 10 denotes market

tightness. The number of buyer-seller meetings is  =  (1 0) ≤ min (1 0), so a
seller’s probability of meeting a buyer is 0 =  (1 0)/0 and a buyer’s probability

of meeting a seller is 1 =  (1 0)/1. As usual, we assume  (·) displays constant
returns (one can use increasing returns but, as remarked in Section 5, that misses
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the whole point). Hence, 0 =  ( 1) ≡  () and 1 =  () , where  (0) = 0,

0 ()  0 and 00 ()  0. This extends the typical specification in monetary

theory,  = 10 (1 + 0).
3 This is too restrictive for our purposes, as it implies

0 + 1 ≤ 1, while as explained below it is possible and interesting to relax that —
e.g., frictionless matching with  = 12 implies 0 + 1 = 2.

In fact, what matters for  is the probability of meeting a seller that produces

 ∈ G. Usually that is 0 for sellers and 1 for buyers, where  is the single-

coincidence probability. But to better compare environments suppose, as in Matsui

and Shimizu (2005), agents can always direct their search toward the right type,

although whether they meet one is still randomly determined by  (·). Then for the
difference across specifications below we can focus on bargaining vs posting.

3 Bargaining

Let the value functions for buyers and sellers be 1 and 0, and let ∆ ≡ 1− 0.

Then the standard discrete-time Bellman equations are

1 = 1 [ () + 0+1] + (1− 1)1+1 +  (1)

0 = 0 [1+1 −  ()] + (1− 0)0+1 (2)

where  = 1 (1 + ),   0.4 Here  is determined by a generic bargaining solution

∆+1 =  (), where  (0) = 0, 0 ()  0, and  () ≤  () ≤  () ∀ ∈ [0 ̄].
Thus,  is a function of the gain from acquiring the asset, ∆. This nests many

solution concepts including the standard generalization of Nash (1950),

max

[ ()− ∆+1]


[− () + ∆+1]

1−


where  is buyers’ bargaining power. From the FOC we get ∆+1 =  () where

 () =
0 ()  () + (1− ) 0 () ()

0 () + (1− ) 0 ()
 (3)

3An exception is Julien et al. (2008), who use  = 0 [1− exp (−)], which is nice but also
quite special. See also Coles (1999).

4Intuitively, (1) says this: with probability 1 a buyer meets a seller, consumes  and continues

without the asset; with probability 1− 1 he does not trade and continues with the asset; and in

any event he enjoys . The story for (2) is similar.
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Similarly, Kalai’s (1977) bargaining solution is ∆+1 =  () where
5

 () =  () + (1− ) ()  (4)

To determine ∆, subtract (1)-(2) to get

∆ = 1 () + 0 () + + (1− 1 − 0)∆+1 (5)

This implies  =  (∆+1), where 
0 (∆+1) = 1

0 ()  0. Then (5) defines a

difference equation ∆ = Φ (∆+1), where

Φ (∆+1) ≡ 1 ◦ (∆+1) + 0 ◦ (∆+1) + + (1− 1 − 0)∆+1 (6)

and  ◦  () ≡  [()] denotes the composite. In steady state (5) implies

∆ =
1 () + 0 () + 

 + 1 + 0
 (7)

where the RHS is a weighted average of buyers’ utility  (), sellers’ cost  (), and

the payoff to holding the asset forever, . For stationary outcomes, combine (7)

with ∆ =  () to get  =  (), where

 () ≡ ( + 1 + 0)  ()− 1 ()− 0 ()  (8)

A stationary monetary equilibrium, or SME, is defined by ∆ =  (), where

 ∈ (0 ̄] solves  =  (). Equivalently, it is described by ∆ ∈ (0 ∆̄], where ∆̄
solves ∆̄ =  (̄). A dynamic monetary equilibrium, or DME, is a nonconstant

solution to (6) with ∆ ∈ (0 ∆̄] ∀, or to (5) with  ∈ (0 ̄] ∀, after eliminating
∆+1 =  (). We call these monetary equilibria, even if the asset is not fiat

currency unless  = 0, because the asset circulates as a medium of exchange.6

5Note (4) is not the definition of Kalai bargaining, but a formula that follows from his axioms,

just like (3) follows from Nash’s axoims. Nash and Kalai differ away from  = ∗, in general, and the
latter has several advantages in models with liquidity considerations (Aruoba et al. 2007). Other

examples are given in Gu and Wright (2016), who also derive properties of  () axiomatically, and

Zhu (2016), who shows how it emerges from simple stragetic bargaining.
6In SME we need  ∈ (0 ̄] for  () ≤  (), and hence for voluntary trade. It may be less

obvious that we need  ∈ (0 ̄] ∀ in DME, but as shown below,  paths that exit (0 ̄] never
return, so we may as well define DME this way (at least for nonstochastic equilibria, because with

sunspots  can exit and return; see Trejos and Wright 2016 and our Supplementary Appendix).

Also, while we focus on monetary outcomes,  ≤ 0 implies there is an equilibrium where agents

dispose of assets, and   0 with  big implies there is one where they hoard rather than trade

assets (at least if we rule out lotteries; see Berentsen et al. 2013 and our Supplementary Appendix).
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Previous analyses of SME impose particular bargaining solutions — e.g., Shi

(1995) or Trejos and Wright (1995) use symmetric Nash, or a game that amounts to

the same thing; Rupert et al. (2001) use generalized Nash; and Trejos and Wright

(2016) use Kalai. To facilitate the presentation, let us start with Kalai. Then these

properties of  () follow from direct calculation:

Lemma 1 Assume Kalai bargaining, and define  ∈ (0 1) and ̄ ∈ ( 1) by

̄ ≡  + 0

 + 1 + 0
and  ≡ 0

 + 1 + 0
 (9)

Then (1)   ̄ ⇒ 00  0; (2)     ̄ ⇒ 0  0; and (3)    ⇒ 00  0. Also,

(0) = 0   (̄) =  (̄).

Figure 1: SME with Kalai bargaining

Figure 1 shows  () for the three cases in Lemma 1 using this notation: ̄ ≡  (̄);

̂ ≡ max[0̄]  () when   ; and  ≡ min[0̄]  ()  0 when   ̄. The left panel

shows ̂ = ̄, the right shows ̂  ̄. From this, the following is immediate:

Proposition 1 Assume Kalai bargaining. (1)   ̄. If    there is no SME; if

    0 there are two SME; if 0 ≤   ̄ there is one SME; if   ̄ there is no

SME. (2)     ̄. If  ≤ 0 there is no SME; if 0    ̄ there is one SME; if

  ̄ there is no SME. (3)   . If  ≤ 0 there is no SME; if 0   ≤ ̄ there

is one SME; if   ̄ there are two subcases: (3a) if ̂ = ̄ (left panel of Figure 1)
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Figure 2: DME with Kalai bargaining

there is no SME, and (3b) if ̂  ̄ (the right panel) there are two SME if ̄    ̂

and no SME if   ̂.

As regards stability, the next result is obvious from Figure 2, showing (6) in

(∆+1∆) space for different  and , with stable steady states indicated by dots

and unstable ones by triangles:

Lemma 2 Assume Kalai bargaining. (1)   ̄. If     0 the high SME is

unstable and the low one is stable; if  = 0 the unique SME is unstable and (0 0)

is stable; and if 0    ̄ the unique SME is unstable. (2)     ̄. The unique

SME is unstable. (3)    If 0   ≤ ̄ the unique SME is unstable; and if

̄    ̂ the low SME is unstable while the high one is stable.

Based on this, the following characterization of DME is immediate:

Proposition 2 Assume Kalai bargaining. If there are no SME then there are no

DME. Otherwise: (1)   ̄. If     0 there are DME with ∆ approaching

the low SME for any initial ∆0 in an interval; if  = 0 there are DME with ∆

approaching 0 for any ∆0 in an interval; and if 0    ̄ there are no DME. (2)

    ̄. There are no DME. (3)   . If ̄    ̂ there are DME with ∆

approaching the high SME for any ∆0 in an interval.
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In terms of economics, in DME, ∆ and  vary over time as self-fulfilling prophe-

cies. This cannot happen in the middle panel of Figure 2, where there is a unique

SME, it is unstable, and any path other than steady state eventually leaves
£
0 ∆̄

¤
never to return. It can happen when there is a stable SME, in which case paths

leading to it from any initial ∆0 are DME. The basin of attraction for SME can

be large: in the left panel of Figure 2, e.g., given     0, for any ∆0 below the

high SME there is a DME converging to the low SME. In terms of mathematics,

except for the fact that Trejos and Wright (2016) use continuous time, Proposition

2 extends their results to general  (·). While that is hardly a major contribution,
it does allow Φ0 (∆)  0, while the usual  (·) does not, and that makes more
challenging the results on cyclical equilibria discussed below. Also, Φ0 (∆)  0 is

needed for some interesting outcomes.7 So generalizing  (·) does have merit.
At this point it is not hard to go from Kalai to generic bargaining. Consider first

 ≥ 0. We still have  (0) = 0   (̄) for any  (). This implies existence of SME

when  ∈ (0 ̂) and nonexistence when   ̂. However, for  ∈ (0 ̄) we cannot say
that there is exactly one SME, only a generically odd number, and for  ∈ (̄ ̂) we
cannot say that there are exactly two SME, only a generically even number. This

is no surprise — of course a parametric  (·) provides more structure and hence more
precise results. In any case, consider next  ≤ 0, and notice

0 () = ( + 1 + 0) 
0 ()− 1

0 ()− 0
0 () 

Now 0 (0)  0 implies existence of SME ∀ ∈ ( 0) and nonexistence for   .8

Given the set of SME, it is easy to describe DME graphically, as in Figure 2.

Proposition 3 Except for the exact number of SME, the results for Kalai generalize

to any  ().

7Here are a few: (i) there can be DME starting from ∆0 above the high SME; (ii) given ∆0
there can be multiple DME; and (iii) there can be DME that oscillate around the high SME before

converging to the low SME. And these are not just hypothetical issues — with a general  (·) it is
easy to construct examples with Φ0 (∆)  0, even if it is impossible for the usual  (·).

8For 0 (0)  0 we need a condition on 0 (0), obviously, such as ( + 1 + 0) 
0 (0)  1

0 (0).
This does rule out some bargaining solutions — e.g., there is no SME with  ≤ 0 and take-it-or-
leave-it offers by sellers, since then  () =  ().
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Now it is natural to conjecture there exist DME that are limit cycles around

SME — but that is false for any bargaining solution representable as  ().

Proposition 4 Cyclic equilibria do not exist.

Proof : First, 0 0 0  0 and 0 1 ∈ (0 1] imply

Φ0 (∆+1) = 1
00 + 0

00 + (1− 1 − 0) 

 (1− 1 − 0)  −1

Given this and Φ0 (0)  0, which follows from (6), it is clear that Φ and Φ−1 cannot

cross off the 45 line. So there cannot be cycles of period 2. But the Sharkovskii

Theorem says that cycles of period   2 imply cycles of period 2. Hence there are

no cycles of any period. ¥
We remark that the Sharkovskii Theorem is a standard tool used to show when

cycles exist (e.g., Azariadis 1993); here it is used to show they do not exist. Also, if

Φ0 (∆)  0 then the dynamics are monotone and cyclic equilibria obviously do not

exit. That is the case for the usual  (·), where 0 =  and 1 =  (1−). For

a general matching technology Φ0 (∆)  0 is not true, but Φ0 (∆)  −1 is, and that
is sufficient.

4 Posting

Posting with directed search, also called competitive search, has sellers committing to

terms of to attract buyers. Thus, in addition to consumers of good  knowing where

to find the right producers, for any  the market further segments into submarkets

identified by pairs ( ), where agents commit to trade  for the asset if they meet,

and tightness  determines the meeting probabilities. As before, 0 =  () and

1 =  () , except  is now tightness in a given submarket, and while equilibrium

implies  = (1−) in every active submarket, to find equilibrium we first allow

 to vary across submarkets (see the survey by Wright et al. 2016 for details).
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Competitive search has arguably better microfoundations than bargaining, espe-

cially for dynamics. To explain, first, of course one can always impose a cooperative

bargaining solution like Nash or Kalai, but one might worry about its strategic foun-

dations. Consider a standard game where a buyer and seller in a stationary setting

make counteroffers of  until one is accepted, with the time between offers denoted

  0 (Rubinstein 1982). The unique subgame-perfect equilibrium has the first offer

accepted, and labeling it  to indicate its dependence on timing,  →  as  → 0

where  is the generalized Nash solution (Binmore et al. 1986). Similarly, Dutta

(2012) provides strategic foundations for Kalai. Such results are commonly regarded

as providing support for cooperative bargaining — indeed the quest for such strategic

foundations has been dubbed the Nash program.9

Coles and Wright (1998), Ennis (2001) and Coles and Muthoo (2003) show the

result in Binmore et al. (1986) holds in dynamic models if we focus on steady state

but not otherwise. When  → 0, in fact, the limit of subgame-perfect equilibrium

is a path for  satisfying a differential equation with  as a stationary point, but

generally  6=  on nonstationary paths.10 Those papers also argue that using

Nash out of steady state is tantamount to using an extensive-form game where

agents are myopic, negotiating as if conditions were constant, when they are not.

And it matters for results: with forward-looking strategic bargaining, e.g., Coles

and Wright (1998) construct dynamic equilibria that are not possible with Nash.

However, their construction is complex. An advantage of posting is that it is simple

even with strategic forward-looking agents, making it ideal for our application.

To proceed, notice that still the value functions satisfy (1)-(2), ∆ satisfies (5)

and steady state satisfies (7). But now, as is standard, to determine ( ) we

9Serrano (2005) nicely puts is as follows: “Similar to the microfoundations of macroeconomics,

which aim to bring closer the two branches of economic theory, the Nash program is an attempt to

bridge the gap between the two counterparts of game theory (cooperative and non-cooperative).

This is accomplished by investigating non-cooperative procedures that yield cooperative solutions

as their equilibrium outcomes.”
10One can show  =  out of steady state in some special cases, e.g.,  = 1,  = 0 or

() = () = , but these are far too restrictive for our purposes.
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maximize sellers’ expected payoff subject to buyers’ getting their expected market

payoff, which is an equilibrium object but taken as given by individuals:

0 = max
()

{ () [∆+1 −  ()] + 0+1} (10)

st
 ()


[()− ∆+1] + + 1+1 = 1 (11)

The Appendix shows that the SOC’s hold at any interior solution to the FOC’s, im-

plying a unique such solution. So all active submarkets are the same, or equivalently,

given  (·) displays CRS, there is just one submarket for each good.
Moreover, the FOC’s imply

∆+1 =
 ()

0 ()  () + [1−  ()] 
0 () ()

 ()0 () + [1−  ()] 0 ()
(12)

where  ≡ 0 () () is the elasticity, and in equilibrium  = (1 −). Note

that, consistent with other applications of competitive search, (12) is identical to

what one gets with Nash bargaining if we swap  for bargaining power , which is

convenient, since any results we get for competitive search also hold for Nash.

As in Section 3, write (12) as ∆+1 =  (), invert to get  =  (∆+1), and

substitute it into (5) to get ∆ = Φ (∆+1), just like (6). However, the method here

is different, because the  () implied by (12) is more complicated. To proceed,

equate (7) to (12) and rearrange to get

(1− ) 0 ()
0 ()

=
1 ()− ( + 1)  () + 

( + 0) ()− 0 ()− 
 (13)

Call the LHS  () and the RHS  (), so SME solves  () =  (). In general,

their properties are complicated, but Lemma 3 in the Appendix shows the situation

must look like one of the panels in Figure 3. Given that, the following result is

immediate:

Proposition 5 Assume posting. For  ∈ [0 ̄), SME exists uniquely. For   0,

multiple SME exist if || is not too big and no SME exist if || is too big. For   ̄,

multiple SME exist if  is not too big and no SME exist if  is too big.

11



Figure 3: Four possible cases for the function  ()

Proof : A SME is a solution to  () =  () with  ∈ (0 ̄). In the top left panel
of Figure 3, with  = 0, SME exists because  (0)   (0) and  (̄)   (̄), and

it is unique because 0 ()  0. In the bottom left panel, with  ∈ (0 ̄), there is a
critical point ̃1 ∈ (0 ̄), and SME exists at  ∈ (̃1 ̄) because  ()   () for 

near ̃1 and  (̄)   (̄). It is unique because 0 ()  0 when  ()  0. In the

bottom right, with  ∈ (̄ ̂) there are two critical points ̃1 and ̃2, and we have

multiple SME when  is not too big. However, when  is too big, () shifts up too

much and there is no SME. Finally, in the top right panel, with   0, there are

multiple SME when || is not too big. However, if || is too big  () shifts down
too much and there is no SME. ¥
For dynamics, Figure 4 immediately yields an analog to Proposition 2:

Proposition 6 Assume posting. If there are no SME then there are no DME.

Otherwise: (a) For  = 0 there are DME with ∆ approaching 0 from any ∆0 in an

interval. (b) For   0 there are DME with ∆ approaching every stable SME from

12



Figure 4: DME with directed search and posting

any ∆0 in an interval. (c) For  ∈ (0 ̄) there are no DME. (d) For  ∈ (̄ ̂) there
are DME with ∆ approaching every SME for any ∆0 in an interval.

Next, we exploit the formal equivalence between competitive search and gener-

alized Nash to significantly extend previous results.

Proposition 7 Assume generalized Nash bargaining. Then SME and DME are

exactly as described in Propositions 5 and 6.

Finally, we know there are no cycles with posting by virtue of Proposition 4,

since it applies to any bargaining solution  (), including generalized Nash, which

is formally equivalent to posting.

Proposition 8 Deterministic cyclic equilibria do not exist with posting.

In a sense, this “salvages” the discussion of dynamics in Trejos and Wright (1995)

with Nash bargaining, which we argued is problematic if one wants to interpret it as

the limit of strategic bargaining. It is not problematic if we reinterpret it in terms

of competitive search, and that delivers the same equations.
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5 Conclusion

It is interesting to know if monetary models have cyclical equilibria because there

is a view that economies featuring monetary exchange are particularly prone to

volatility.11 In a standard, logically-consistent environment that has an endogenous

role for liquidity — i.e., assets are used as media of exchange — we show that multiple

stationary and dynamic equilibria are possible but cycles are not. This was not

obvious ex ante, since cycles can arise in other monetary models, including OLG

models (recall fn. 1). In those settings it is routine to derive the analog to our

dynamical system, say  = Φ (−1) where  is real balances. In the textbook

OLG model, we can get Φ0 ()  −1 and hence cyclic equilibria if (at the risk
of oversimplifying) savings or labor supply functions are “backward bending” (see

Azariadis 1993 for a textbook treatment). We do not have those ingredients, but

we have others those models lack, the meeting technology  (·) and the trading
protocol  (·), and we made every effort to specify these quite generally. Can those
ingredients substitute for “backward bending” savings or labor supply functions?

We prove they cannot. At least not without “tricks” like increasing returns

in  (·), which are well known to generate cycles (e.g., Diamond and Fudenberg
1989), but that has nothing to do with money and the issue at hand is whether

monetary considerations per se lead to volatility. This raises a question: how do

we get stochastic — i.e., sunspot — equilibria? These are shown to exist in the

Supplementary Appendix using a well-known method (see Trejos and Wright 2016

for a recent application), although not the one used in the textbook OLG model. In

an OLG model, Φ0 ()  −1 implies the existence of cyclic and stochastic equilibria
around a steady state where Φ () cuts the 45 from above. We cannot appeal

to that because Φ0 ()  −1 is impossible. Instead, we construct equilibria that
11To be clear, the goal is not to build models capturing deterministic cycles that we think we see

in the data; it is to show that some economies can be unstable in the sense that they can generate

intricate dynamics due to beliefs, not (only) to changes in fundamentals. Rudimentary models

do not generate serious predictions testable by time-series econometrics. Yet if they can display

intricate dynamics based on beliefs, it suggests that realistically-complex economies can, too.

14



stochastically fluctuate around  when Φ () cuts the 45 line from below. This

occurs in the low (high) steady state in the far left (right) panel of Figure 2 in the

bargaining model. Figure 4 shows something similar in the posting model. In these

scenarios, we get stochastic but not cyclic equilibria.

Finally, Burdett et at. (2018) propose a model that is similar to ours in many

ways, including  ∈ {0 1}, but also has a key difference: it uses noisy search as in
Burdett and Judd (1983). This means that a buyer each period sees one or more than

one posted price with positive probability. That can yield cycles. Indeed, as is very

well known, Burdett-Judd search models generate many interesting phenomena,

including endogenous price dispersion. This is relevant because Φ0 ()  −1 is
possible in Burdett et at. (2018), not because savings or labor supply functions are

“backward bending” as in OLG models, but because of nonlinear feedback from +1

to the endogenous price distribution at  and hence . That channel is inoperative

here, where the price distribution is degenerate, so Φ0 ()  −1 and hence cycles
are impossible even though sunspots are possible. We realize that we are going into

a lot of detail here, but this is how we discover which features of models generate

different kinds of results, and in particular different kinds of volatility. For us, that

constitutes progress.
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Appendix

A. Here we solve the problem (10). Form the Lagrangian

L =  () [∆+1 −  ()]+1+1+

½
 ()


[()− ∆+1] + 1+1 − 1 + 

¾
where   0 is the multiplier. The FOC’s are:

 : 0 () [∆+1 −  ()] +
 [()− ∆+1] [

0 ()−  ()]

2
= 0 (14)

 : − () 0 () +  ()
0 ()


= 0 (15)

 :
 ()


[()− ∆+1] + 1+1 − 1 +  = 0 (16)

From (15),  = 
0 () 0 (). Then from (14),

 () [∆+1 −  ()]
0 () = [1−  ()] [()− ∆+1] 

0 () 

where  () = 0 ()  (). This can be rearranged into (12).

After simplification the bordered Hessian at any solution to the FOC’s is

 =

⎡⎢⎣ 00(−∆)


0
0 +

2(1−)(−∆)
2

0
0 −0


−(1−)(−∆)

2

−0


(000−000)
0 −0



−(1−)(−∆)
2

−0


0

⎤⎥⎦ 
The determinant is

|| = −
³


´2
(− ∆)

"
0000


+

 (1− )
2
(− ∆) (000 − 000)

20

#
 0

Hence the SOC’s hold at any solution to the FOC’s, so there is a unique solution to

the FOC’s. ¥

B. We verify  () and  () are as shown in Figure 3. First, clearly  (0) = 0 and

0 ()  0 ∀ ∈ (0 ̄). Next, let us dispense with  = ̄, in which case  = ̄ is a

SME. Now consider  6= ̄. It is easy to see  (̄) = −1,  (0) = −1 if  6= 0 and
 (0) = 1 ( + 0) if  = 0. For the rest, we have this:

Lemma 3 (a) As shown in the upper left panel of Figure 3,  = 0 implies 0 ()  0

∀. (b) As shown in the upper right panel,   0 implies there exists ̃ ∈ (0 ̄) such
that 0 ()  0 ∀  ̃ and 0 ()  0 ∀  ̃. (c) As shown in the lower left,
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0    ̄ implies there exists ̃1 ∈ (0 ̄) such that  ()  0 ∀  ̃1. Also

 ()  0 ⇒ 0 ()  0 ∀  ̃1. Also,  () % ∞ as  & ̃1. (d) As shown in

the lower right, ̄    ̂ implies there exist ̃ ∈ (0 ̄), ̃1 ∈ (0 ̃) and ̃2 ∈ (̃ ̄)
such that  ()  0 ∀ ∈ (̃1 ̃2),  ()  0 ∀ ∈ (̃1 ̃2), 0 ()  0 ∀  ̃ and

0 ()  0 ∀  ̃. Also,  ()%∞ as  & ̃1 or  % ̃2.

Proof : First note that  has a critical point at any  where the denominator

 = ( + 0) () − 0 () −  vanishes. This happens when  () =  where

 () ≡ ( + 0) () − 0 (). As shown in Figure 5,  (0) = 0,  (̄) = ̄ and

00 ()  0. The left panel shows the case ̄  ̂ ≡ argmax  (); the right panel
shows ̄  ̂. In the left panel the following is clear:   0 implies no solution to

 () =  and hence no critical points in [0 ̄];  = 0 implies one critical point at

 = 0; 0    ̄ implies one critical point ̃1 ∈ (0 ̂); ̄    ̂ implies two critical

points ̃1 ∈ (0 ̂) and ̃2 ∈ (̂ ̄); and   ̂ implies no critical points. The right

panel is similar except ̃2  ̄, which simply means the case   ̄ is irrelevant. Also

note that when  ∈ (̄ ̂) and  () has two critical points in (0 ̄), its numerator

satisfies   0 ∀ ∈ (0 ̄), while   0 and hence  ()  0 iff  ∈ (̃1 ̃2).

Figure 5: The function  ()

We now go through an argument for each panel of Figure 3. To begin, derive

0() =
( + 1 + 0) { [0 ()− 0 ()] +  [ ()0 ()−  () 0 ()]}

[( + 0) ()− 0 ()− ]
2

 (17)

Note that  ()0 ()   () 0 () for any concave  and convex  with  (0) =

 (0) = 0. So 0 ()  0 when  = 0, as in the upper left panel of Figure 3.
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Next note that

lim
→0

0() = lim
→0

( + 1 + 0)
n

h
0()
0() − 1

i
+ 

h
 ()− ()0()

0()

io
h
( + 0)

()

0() − 0
()

0() − 

0()

i2
0 ()

= lim
→0
−( + 1 + 0)


0 () 

Hence,   0⇒ 0(0) = −∞ and   0⇒ 0 (0) = +∞. Also,

0 (̄) =
( + 1 + 0) [

0 (̄)− 0 (̄)]
(− ̄)

 (18)

so   ̄ ⇒ 0(̄)  0 and   ̄ ⇒ 0 (̄)  0. Now, as in the lower left panel,

with 0    ̄, we claim 0 ()  0 ∀ ∈ (̃1 ̄) such that  ()  0. From (17)

this is obvious for   ∗ since then 0 ()  0 (). It remains to show 0 ()  0 for

  max {̃1 ∗} such that  ()  0. In this range,  and  are positive, and 

is concave with a maximum at   ∗.

Consider the right panel of Figure 5 with ̂  ̄. For  ∈ (∗ ̄), it is clear that 
is increasing and  is decreasing, so 0 ()  0 when  ()  0, because   0.

Now consider the left panel with ̂  ̄. Suppose ̂  ∗. Then it is again clear that

 is increasing and  is decreasing, so 0 ()  0 for  ∈ (∗ ̂) when  ()  0.

Now consider (̂ ̄). For that, notice

0 () ∝ 
h

0
()− 

0
()
i
+ 

h
 ()

0
()−  () 

0
()
i


h

0
()− 

0
()
i
[−  ()]  0 (19)

where the last inequality follows because  ()   (̄) = ̄ for  ∈ (̂ ̄). Finally,
consider ̂  ∗. Again, we only need to show 0 ()  0 for   ∗, which is true

by (19) for ̄    max (̂ ∗). This completes the argument for lower left panel.

Continuing with the upper and lower right panels, we note that 00 () is messy,

in general, but at any  such that 0 () = 0 it is easy to check

00 =
[(− )00 − (− ) 00] ( + 1 + 0)

2


In the upper right panel with   0 and   0, this implies 00 ()  0 when

0 () = 0, so  increases below and decreases above a unique point ̃ ∈ (0 ̄).
Similarly, in the lower right panel with   ̄, we know 00  0 when 0 () = 0

over the relevant range. Hence,  decreases below and decreases above a unique

̃ ∈ (̃1 ̃2). This completes the argument for the upper and lower right panels. ¥
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Supplementary (not for publication) Appendix

A. Although deterministic cycles are impossible, there can be sunspot equilibria,

where∆ and  fluctuate randomly. This has been shown in related indivisible-asset

models by several people, although there are differences (e.g., continuous vs discrete

time). Here we show how to derive these kind of results, using our notation for a

general meeting technology  (·) and trading protocol  (·).
Consider a random variable  ∈ {}, where  switches from  to 0 6= 

with probability  at the end of each period. In state ,  is the quantity a seller

produces for the asset, while 1 and 0 are the value functions. For  = ,

1 = 1 [ () +  (1− )0 + 0] (20)

+ (1− 1) [(1− )1 + 1] + 

0 = 0 [ (1− )1 + 1 −  ()] (21)

+ (1− 0) [(1− )0 + 0] 

and similarly for  = . Thus, a buyer may or may not trade for , but in either

case the state changes with some probability, and in any event he gets .

It is possible that agents ignore , but a proper sunspot equilibrium has  6= ,

say   . Emulating the analysis in the baseline model, we let ∆ = 1 − 0

and determine the terms of trade by  () =  (1− )∆ + ∆0. Using (20)-

(21), this implies

 () =  () + (1− ) () and  () =  () + (1− ) () ,

where  () ≡ 1 () + 0 () + +  (1− 1 − 0)  (). Following Azariadis

(1981), we solve these for

 =
 ()−  ()

 ()−  ()
and  =

 ()−  ()

 ()−  ()
 (22)

If we can find (   ) such that    and   ∈ (0 1), where the ’s
are given by (22), we have satisfied the conditions for a proper sunspot equilibrium.

It is convenient here to work with ( ) rather than ( ), with  ≡  (),

and rewrite (22) as

 =
 −Ψ ()

Ψ ()−Ψ ()
and  =

Ψ ()− 

Ψ ()−Ψ ()
 (23)

21



Figure 6: Existence of ISE

where Ψ () =  ◦ −1 (). Notice Ψ () = Φ (), where Φ is defined in Section

3, so Ψ () is concave (convex) iff Φ (∆) is concave (convex); indeed,  = Ψ (+1)

is simply the dynamical system in  space rather than  space, and a solution to

 = Ψ () is a SME.

Proposition 9 Let   0 be a stable SME. Then ∀ ( ) in a neighborhood
around  with      there is a proper sunspot with the   ∈ (0 1)

given by (23).

Proof: We seek ( ) such that   ∈ (0 1) when the ’s are given by (23).
In the the left panel of Figure 6, there are two SME,  and   0, and the

lower one is stable. In this case, pick any  ∈ ( ̄), where  is the maximum

of 0, another SME to the left of  if it exists, and the horizontal intercept of

Ψ. Now pick any  ∈ ( ̄) where ̄ is the minimum of the next SME to the

right of  or the  corresponding to the upper bound ̄. From the graph, clearly,

Ψ ()      Ψ (), which is easily shown to imply that the ’s given in

(23) are in (0 1). The right panel shows the case where the higher SME  is stable,

which is similar. ¥

B. It is well known that with nonconvexities, including indivisible assets, it may be

desirable to trade using lotteries. Without loss in generality we restrict attention to

the case where sellers deliver the goods with probability 1 while buyers hand over

their assets with probability  ≤ 1, and it is possible to have   ∗ and  = 1, or

 = ∗ and   1, but not   ∗ and   1 or   ∗.
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Figure 7: DME with lotteries

With lotteries, for any  we have

1 = 1 [ ()− ∆+1] + 1+1 +  (24)

0 = 0 [∆+1 −  ()] + 0+1 (25)

Consider generalized Nash bargaining (other bargaining solutions and posting are

similar),

max


[ ()− ∆+1]

[∆+1 −  ()]

1−
st  ≤ 1

given the constraints   ≥ 0 are slack, as they must be if there are gains from
trade. When ∆+1   (∗)+ (1− )  (∗) the solution is  = 1 and  is the same

as without lotteries; otherwise it is  = ∗ and

 =
 (∗) + (1− ) (∗)

∆+1

 (26)

A difference from the benchmark model is that now there is an equilibrium with

trade at   0 no matter how big  gets: rather than hoarding the asset, when 

is big, buyers use it to acquire  = ∗ by offering it to the seller with probability

  1, with  → 0 as →∞. So asset circulation slows down as  rises but never
stops.

For a general mechanism  () = ∆+1, with lotteries the dynamical system

is ∆ = Φ∗ (∆+1), where

Φ∗ (∆) ≡ 1 ◦∗ (∆) + 0 ◦∗ (∆) +  (27)

+[1− (1 + 0)
∗ (∆)]∆
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with ∗ (∆) =  (∆) and ∗ (∆) = 1 if  (∆)  ∗, while ∗ (∆) = ∗

and  (∆) =  (∗) ∆∗ otherwise. Thus Φ∗ is linear for ∆+1  ∆∗ =  (∗) .

Figure 7 amends Figure 2 to allow lotteries (dashed curves reproducing the case

without lotteries). When there is two SME without lotteries, either the higher one

is eliminated (as in the second highest curve in the right panel), or it survives and

we introduce another SME with ∆  ∆∗ (as in the highest curve in the right panel).

But the main point is that lotteries do not eliminate multiplicity.
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